首页> 外文OA文献 >Testing Advanced Driver Assistance Systems using Multi-objective Search and Neural Networks
【2h】

Testing Advanced Driver Assistance Systems using Multi-objective Search and Neural Networks

机译:使用多目标搜索和神经网络测试高级驾驶员辅助系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recent years have seen a proliferation of complex Advanced Driver Assistance Systems (ADAS), in particular, for use in autonomous cars. These systems consist of sensors and cameras as well as image processing and decision support software components. They are meant to help drivers by providing proper warnings or by preventing dangerous situations. In this paper, we focus on the problem of design time testing of ADAS in a simulated environment. We provide a testing approach for ADAS by combining multi- objective search with surrogate models developed based on neural networks. We use multi-objective search to guide testing towards the most critical behaviors of ADAS. Surrogate modeling enables our testing approach to explore a larger part of the input search space within limited computational resources. We characterize the condition under which the multi-objective search algorithm behaves the same with and without surrogate modeling, thus showing the accuracy of our approach. We evaluate our approach by applying it to an industrial ADAS system. Our experiment shows that our approach automatically identifies test cases indicating critical ADAS behaviors. Further, we show that combining our search algorithm with surrogate modeling improves the quality of the generated test cases, especially under tight and realistic computational resources.
机译:近年来,特别是用于自动驾驶汽车的复杂高级驾驶员辅助系统(ADAS)激增。这些系统由传感器和照相机以及图像处理和决策支持软件组件组成。它们旨在通过提供适当的警告或预防危险情况来帮助驾驶员。在本文中,我们关注模拟环境中ADAS的设计时测试问题。通过将多目标搜索与基于神经网络开发的代理模型相结合,我们为ADAS提供了一种测试方法。我们使用多目标搜索来指导ADAS最关键行为的测试。代理建模使我们的测试方法能够在有限的计算资源内探索大部分输入搜索空间。我们描述了在有和没有代理建模的情况下多目标搜索算法表现相同的条件,从而显示了我们方法的准确性。我们通过将其应用于工业ADAS系统来评估我们的方法。我们的实验表明,我们的方法可以自动识别表明关键ADAS行为的测试用例。此外,我们表明,将搜索算法与代理建模相结合可以提高生成的测试用例的质量,尤其是在紧张而现实的计算资源下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号